
Monte Carlo Integration: Expected Values and
Simulations



Introduction to Expected Value and Monte Carlo
Integration

▶ We are often interested in computing E (h(X )), the expected
value of a function h(X ), where X is a random variable.

▶ In some cases, E (h(X )) is easy to compute when the
probability distribution pX (x) is known and simple.

▶ However, in more complex situations, direct computation of
E (h(X )) becomes difficult or even impossible.



Motivating Example: Loading the Car

▶ Scenario: My family needs to load into the car quickly,
involving tasks like putting on shoes, using the restroom, etc.

▶ Let X be the time it takes for the last of my five kids to get in
the car.

▶ Define X = max{Y1,Y2, . . . ,Y5}, where Yi are independent
exponentially distributed random variables with rates
0.5, 0.75, 1.0, 0.75, and 2.0, respectively.

▶ Computing E (X ) analytically is challenging due to the
maximum of multiple exponential random variables.



Why is this Difficult?

▶ The distribution pX (x) of X = max{Y1,Y2, . . . ,Y5} is not
straightforward to calculate.

▶ Direct computation involves complex convolution of
exponential distributions, which is difficult to express in a
closed form.

▶ This motivates the use of Monte Carlo methods to estimate
E (X ) through simulation.



Monte Carlo Integration for E (h(X ))

▶ Monte Carlo integration allows us to estimate the expected
value of h(X ) by simulating random values of X from its
distribution pX (x).

▶ For independent samples X1,X2, . . . ,Xn ∼ pX (x), the Monte
Carlo estimate of E (h(X )) is:

Ê (h(X )) =
1

n

n∑
i=1

h(Xi )

▶ As the sample size n increases, the estimate Ê (h(X ))
converges to the true expected value E (h(X )) (Law of Large
Numbers).



Monte Carlo and Simulation Studies

▶ Monte Carlo integration is closely linked to simulations. In
practice, you simulate samples from the distribution of
interest and apply the function h(X ).

▶ In the loading car example, we simulate times
X = max{Y1, . . . ,Y5}, where the Yi follow different
exponential distributions.

▶ This technique provides a way to estimate complex integrals
and expected values when direct computation is infeasible.



Formal Applications of Monte Carlo Integration

▶ Monte Carlo methods are widely used in formal settings such
as:
▶ Hypothesis testing: Generating random samples under the null

hypothesis to evaluate the test statistic’s distribution.
▶ Model validation: Using simulations to assess the accuracy of

a statistical or machine learning model.
▶ Bayesian inference: Estimating posterior distributions through

sampling (e.g., Markov Chain Monte Carlo).

▶ These methods are critical for solving complex,
high-dimensional problems in science, finance, and
engineering.



Probability as an Expected Value

▶ Consider the same family loading scenario: The time X it
takes for the last of my five kids to get in the car is:

X = max{Y1,Y2, . . . ,Y5}

where Yi ∼ Exp(λi ) with rates 0.5, 0.75, 1.0, 0.75, and 2.0.

▶ We are interested in the probability that the car will be loaded
in less than 3 minutes:

P(X ≤ 3)

▶ This can be expressed as an expected value:

P(X ≤ 3) = E [I(X ≤ 3)]

where I(·) is the indicator function.



Monte Carlo Estimation for Probabilities

▶ To estimate P(X ≤ 3), we use Monte Carlo integration:

P̂(X ≤ 3) =
1

n

n∑
i=1

I(Xi ≤ 3)

where Xi are independent samples of
X = max{Y1,Y2, . . . ,Y5}.

▶ As n increases, the Monte Carlo estimate converges to the
true probability P(X ≤ 3) due to the Law of Large Numbers.



Variance of the Monte Carlo Estimator

▶ The accuracy of a Monte Carlo estimate depends on its
variance. For the general case of estimating E (h(X )), the
variance of the Monte Carlo estimator is:

Var
(
Ê (h(X ))

)
=

Var(h(X ))

n

▶ For probabilities, where h(X ) = I(X ≤ 3), we have:

Var
(
P̂(X ≤ 3)

)
=

P(X ≤ 3)(1− P(X ≤ 3))

n

▶ The variance decreases as the sample size n increases.



Confidence Interval for Probability Estimate

From the variance we can compute the Monte Carlo confidence
interval as

Ê (h(X ))± 1.96×
√
Var

(
Ê (h(X ))

)

▶ In the loading car example, we estimated P̂(X ≤ 3) = 0.85
with variance V̂ar = 0.00001275.

▶ The standard error is:

SE =

√
0.85(1− 0.85)

10, 000
= 0.00357

▶ The 95% confidence interval is:

0.85± 1.96× 0.00357 = [0.842, 0.858]



Step-by-Step Monte Carlo Integration

Step 1: Define the Problem

▶ We want to compute E (h(X )), where h(X ) is a function of a
random variable X .

▶ Example: The time X it takes for the last of five kids to load
the car.

Step 2: Simulate Random Samples

▶ Simulate independent random samples X1,X2, . . . ,Xn from
the distribution of X .

▶ In our case, simulate X = max{Y1,Y2, . . . ,Y5}, where
Yi ∼ Exp(λi ).



Step-by-Step Monte Carlo Integration (cont.)

Step 3: Apply the Function

▶ For each sample Xi , compute h(Xi ).

▶ In the loading car example, for estimating the probability
P(X ≤ 3), use h(X ) = I(X ≤ 3).

Step 4: Compute the Monte Carlo Estimate

▶ The Monte Carlo estimate of E (h(X )) is:

Ê (h(X )) =
1

n

n∑
i=1

h(Xi )



Step-by-Step Monte Carlo Variance

Step 5: Estimate the Variance and Confidence Interval

▶ The variance of the Monte Carlo estimator is given by:

Var
(
Ê (h(X ))

)
=

Var(h(X ))

n

▶ For probabilities, h(X ) = I(X ≤ 3), the variance becomes:

Var
(
P̂(X ≤ 3)

)
=

P(X ≤ 3)(1− P(X ≤ 3))

n

▶ Find the Monte Carlo confidence interval using

Ê (h(X ))± 1.96×
√

Var
(
Ê (h(X ))

)



Step-by-Step Reporting Monte Carlo Results

Step 6: Reporting Results in Context

▶ Report the Monte Carlo estimate Ê (h(X )) along with the
sample size n and the variance of the estimator or the Monte
Carlo confidence interval.

▶ Example: After simulating 10,000 samples, the estimated
probability that the car will be loaded within 3 minutes is
P̂(X ≤ 3) = 0.85 with variance:

V̂ar
(
P̂(X ≤ 3)

)
=

0.85(1− 0.85)

10, 000
= 0.00001275

▶ Interpret the results in context: ”The Monte Carlo estimate
for the probability the the car will be loaded in 3 minutes is
85%, with a 95% Monte Carlo confidence interval of [0.842,
0.858]”


