
Lab: Implementing Gradient Descent for a
Single-Layer Perceptron

1 Introduction

In this lab, you will implement Gradient Descent to train a single-layer
perceptron for binary classification on simulated data. The perceptron is
one of the simplest neural network models, and understanding its mechanics
will provide a foundation for more complex machine learning models.

2 Background

2.1 What is Gradient Descent?

Gradient descent is an optimization algorithm used to minimize functions by
iteratively moving in the direction of the steepest descent of the function. It is
widely used in machine learning to optimize model parameters by minimizing
a defined error or loss function.

For a given parameter θ, the gradient descent update rule is:

θ := θ − α
∂L

∂θ

where:

• α is the learning rate, which controls the step size.

• L is the loss function, measuring the error between predictions and
actual values.

• ∂L
∂θ

is the partial derivative of the loss function with respect to θ.

By iteratively applying this update rule, gradient descent minimizes the
loss function, moving towards optimal parameter values.
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2.2 What is a Single-Layer Perceptron?

A single-layer perceptron is a simple linear classifier that maps input features
to a binary output. It consists of a weight vector w and a bias b, and
computes the output as follows:

ŷ = f(w · x+ b)

where:

• w · x is the dot product of the weight vector and the input vector.

• b is the bias term, allowing the decision boundary to shift.

• f(z) is an activation function applied to the result.

In this lab, we will use the sigmoid activation function, which outputs
probabilities between 0 and 1:

σ(z) =
1

1 + e−z

For binary classification, our perceptron will output a label ŷ of 1 if
σ(z) ≥ 0.5 and 0 otherwise. We train the perceptron by finding the weights
and bias that minimize the binary cross-entropy loss function, which
measures the difference between predicted probabilities and actual labels.

2.3 Loss Function

The binary cross-entropy loss function for a single-layer perceptron is:

L = − 1

m

m∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi))

where:

• m is the number of samples.

• yi is the true label for sample i (0 or 1).

• ŷi is the predicted probability for sample i, given by the sigmoid func-
tion σ(w · xi + b).
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3 Gradient Descent for Training the Percep-

tron

To minimize the binary cross-entropy loss, we use gradient descent to update
the weights w and bias b.

• Compute the gradients for w and b:

∂L

∂wj

=
1

m

m∑
i=1

(ŷi − yi)xi,j

∂L

∂b
=

1

m

m∑
i=1

(ŷi − yi)

where:

– xi,j is the j-th feature of the i-th sample.

– ŷi = σ(w · xi + b) is the predicted probability.

• Update the weights and bias with the gradients:

wj := wj − α
∂L

∂wj

b := b− α
∂L

∂b

Summary of Gradient Descent Steps 1. Calculate ŷi for each sample using
the current w and b. 2. Compute the gradients of L with respect to w and
b. 3. Update w and b using the learning rate α. 4. Repeat until the loss
stabilizes or a set number of iterations is reached.

4 Tasks

Complete the following tasks to implement a single-layer perceptron with
gradient descent.

1. Generate and Split the Dataset.
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• Generate a synthetic dataset with 1000 samples and two features.
Ensure the features have some separation between the two classes,
for example by generating data with two clusters.

• Label each sample with 0 or 1 based on its class.

• Split the data into 80% training and 20% testing sets.

2. Initialize Parameters.

• Set the weights w and bias b to small random values (e.g., initial-
ized to zeros or small random numbers).

3. Define the Activation Function.

• Implement the sigmoid activation function:

σ(z) =
1

1 + e−z

• Use a threshold of 0.5 on σ(z) to classify outputs as 0 or 1.

4. Implement Gradient Descent.

• Calculate the loss using binary cross-entropy on the training set.

• Compute the gradients for w and b as shown above.

• Update the weights and bias based on the gradients and the learn-
ing rate α.

• Repeat for a fixed number of iterations (e.g., 1000) or until the
loss stabilizes.

5. Evaluate the Model.

• After training, evaluate the final loss on both the training and
testing sets.

• Use the model to predict labels on the testing set, and calculate
the classification accuracy.
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5 General Instructions

• Experiment with different learning rates to observe their impact on
convergence.

• Track and plot the loss over iterations to visualize the optimization
process.

• Use a random seed for reproducibility when generating the dataset.

6 Expected Results

At the end of the lab, you should have:

• A trained single-layer perceptron using gradient descent.

• Plots showing the decrease in loss over iterations.

• The training and testing loss values, along with the testing accuracy.

• Observations on the effect of the learning rate and number of iterations
on the model’s performance.

5


	Introduction
	Background
	What is Gradient Descent?
	What is a Single-Layer Perceptron?

	Objective
	Dataset
	Tasks
	General Instructions
	Code Template
	Expected Results
	Submission

